About Malaria

Reference: Johns Hopkins Malaria Research Institute

Despite mankind’s longstanding struggle to control mosquito populations, the World Health Organization currently estimates that each year malaria causes 300 to 500 million infections and over 1 million deaths each year.

Malaria is perhaps even tougher to combat than HIV or tuberculosis because of its multiple distinct life-cycle stages and its genetic complexity, which allows Plasmodium to adapt rapidly to drugs and to our immune system’s efforts to render it ineffective. With billions of parasites circulating in a single human host, Plasmodium species are poised to resist immunologic and chemotherapeutic attacks. With the aid of mosquito vectors, a single infected individual can transmit to hundreds of other individuals within months, far outstripping the infectiousness of HIV or tuberculosis.


Malaria is a febrile, mosquito-borne infection, classically characterized by periodic chills, rigors, and high fevers followed by profuse sweating, which occur at regular intervals of 48 to 72 hours. Infection in humans begins when the infected female anopheline mosquito injects the sporozoite parasitic form from its salivary glands into the bloodstream during a blood meal. The sporozoites are carried to the liver, where they undergo asexual. When these infected liver cells burst, merozoites are released into the blood, where they invade red blood cells. The intraerythrocytic parasite develops through ring forms into schizonts that produce more infectious merozoites that affect additional red cells. The periodic fever is the result of synchronization of red cell lysis and release of more merozoites. Some of the organisms develop into distinct sexual forms (gametocytes) which, if ingested by the Anopheles mosquito during a feeding, can undergo sexual reproduction that starts the cycle over again.

Malaria is prevalent throughout most of the tropical world, producing a situation in which 40% of the world’s population is at risk for acquiring this disease. Affecting 300 to 500 million people yearly, malaria is considered one of the most common infectious diseases and the most important of the parasitic diseases. Infections in humans are caused by four different species of the genus PlasmodiumPlasmodium falciparumPlasmodium malariaPlasmodium vivax, and Plasmodium ovale are associated with different clinical presentations, progression, prevalence, and antimalarial resistance patterns.P. falciparum infection results in the highest morbidity and mortality, accounting for almost all of the over 1 million deaths caused by malaria annually.


  • Of the 300-500 million clinical cases of malaria that occur globally each year, 90 percent of them are in Africa.
  • Malaria is endemic in more than 90 countries.
  • Forty percent of the world population is at risk for malaria.
  • Ten percent of world population gets sick each year with malaria.


  • Number of fatal cases of malaria each year: over 1 million
  • Most common age at death: 4 years
  • Every 30 seconds, a child dies of malaria
  • Five percent of African children are killed by malaria, almost 3,000 each day, or the equivalent of seven jumbo jets full of children crashing every day.
  • Up to 23 percent of African infants are born with the malaria parasite.


Cases of malaria around the world have increased greatly over the past five years. Just as seriously, the parasite is rapidly becoming resistant to the drugs we use for its prevention and treatment.

Many U.S. citizens travel to malarious areas and are at severe risk of the disease when they return home if not properly diagnosed and effectively treated. The Centers for Disease Control and Prevention, which reports between 1,600 and 2,000 cases in the United States annually, considers this to be about half the actual number of cases occurring in the country.

Anopheles mosquitoes, which transmit malaria, are common in most populated regions of the world, including almost everywhere in the United States. In the United States, occasional outbreaks transmitted locally by indigenous mosquitoes have occurred in the past five years in California, Texas, Michigan and near New York City.

Anopheline mosquitoes are cold-blooded, which means their body temperature and their ability to nurture the Plasmodium parasite is affected by the temperature of their surroundings. With increasing temperatures due to global climate change, most new areas where there is a potential risk for malaria transmission will be temperate regions where lower temperatures presently limit the mosquito populations and the parasite’s ability to develop in them.


In 1995, 28 percent of household revenue in Sub Saharan Africa went to treat malaria alone.

Approximately 10 percent of hospital admissions in Africa are due to malaria.

A single bout of malaria is estimated to cost a sum equivalent to 10-20 working days in India and Africa.

A very-low-income African family, whose yearly income is $68, spends $19 for malaria treatment each year.

Malaria tends to strike at harvest time for five or six months each year.


© 2013, Johns Hopkins University. All rights reserved.

Reproduced with permission of the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD